
Design a Better Database with a Data Dictionary
Get step-by-step instructions to create a data dictionary that
makes designing a database easier.
By Thomas Francl

Data dictionaries help you design databases consistently and satisfy system documentation requirements. Even though data
dictionaries have been around for at least 30 years, most systems designers/programmers have shunned this technology since
dictionaries are perceived as a documentation task better left to clerical staff. And they're missing out.

Creating the dictionary during the early systems design phase enhances design activities by identifying individual data
elements and where they are stored in the system. This organized approach saves time and eliminates boring programming
tasks. Afterward, system maintenance is easier because the dictionary forces discipline of a single definition for each data
entity. Further, the clerical task of documenting the database structure is automatic.

Many large, successful software companies are among those who have shunned a data dictionary standard. For example, one
high-end accounting system uses the variable name IDCUST to identify the customer number in the customer table, but then
uses the variable CUSTOMER to identify the customer number in the invoice table. Imagine the confusion of a new
maintenance programmer or the programmer who is contracted to create supplemental reports from this data. That company
has made its workflow less efficient.

A methodology

So just what is a data dictionary and why have I learned to love them? System developers use a variety of tools when designing
databases: pencil and paper, word processing, Microsoft Excel, or copying databases from similar systems. But none of these
choices give you the data definition consistency forced by a data dictionary.

Database management systems such as Visual FoxPro and Microsoft SQL use data dictionaries to define the basic organization
of a database. A data dictionary contains a list of all files in the database and the names and types of each field. Data
dictionaries don't contain any data from the database, only bookkeeping information for managing it.

In the FoxPro environment, you create a table structure with MODIFY STRUCTURE, then build a database container
consisting of those tables. Similarly, you add tables to a SQL database, and fields to each table. In these systems, tables and
data fields are dependent upon one another, which means a field such as CITY could be 25 bytes long in the Customer table
and only 20 bytes long in the Vendor table. Likewise, you could define a BALANCE field as a Numeric 12,2 in the customer
table but as a Currency field in the Vendor table. This inconsistency causes confusion for designers, programmers, and users
alike.

But when you use a data dictionary as a methodology — a way of creating and implementing a data dictionary as a design
structure — you force consistency. As a methodology, a data dictionary manages a list of database tables and data fields (and
their attributes), then specifies what fields to include in each table. This methodology could use index cards, as many
programmers did in the old mainframe days, but is more commonly stored in small databases on a PC.

When I create my data dictionary, I define and maintain tables and fields independently. The table list might include Customer,
Vendor, and Invoice tables. That Customer table is a Visual FoxPro DBF that contains mostly static information about the
customer. Period. There is no mention of what that data is.

The list of data fields describes the individual pieces of information I'll store in the various tables. Examples include Customer
Number, Company Name, Balance Owed, etc. In a FoxPro environment, you have to know that the customer number is a 10-
byte character field while the balance is a 15-byte numeric field with 2 decimals. No matter what table the Customer Number is

in (Customer, Invoice, etc.), it will always have a Character-10 format.
The third table in my dictionary itemizes which data fields are in each table but makes no mention of the attributes of either the
fields or the tables. The list simply includes entries such as: "CUSTOMER, CUSTNUMB", "CUSTOMER,COMPANY",
"VENDOR,COMPANY", etc.

The discipline forced by your data dictionary makes screen and report design much easier, especially in a team environment.
Everyone knows the attributes of every field in every table in the system. Further, should the need arise to change the field
attributes, such as increasing the length of the customer number to 12 characters, you only have to modify a single data
dictionary field definition.

Figure 1: Dictionary entries -- You can see how this approach imposes order on the
design of the database by you and anyone else.

Sequence of usage

You should have a data dictionary manuscript for good system documentation. Programmers tasked with system maintenance
or enhancement rely upon it. Creating a true data dictionary before you build databases facilitates the design process and
automatically fulfills that documentation requirement. Creating the data dictionary after you build the databases only fulfills
the documentation requirement, and programmer rarely enjoy creating documentation.

I've coded a simple system, DY-Dictionary, that facilitates the development of a database using the data dictionary
methodology I've discussed. It's available for subscriber download at http://My.Advisor.com/doc/18900. The system lets you
create the table and fields lists, then easily join them to design each table structure. Figure 1 shows a screenshot of the program.

The Table grid contains a list of system tables you define during the design phase. The Field grid contains the list of data
elements along with their attributes. Adding and modifying the information is straightforward using the Add & Delete buttons
and editing the value of each column. To begin, add a table such as VENDOR and enter a brief description.

You'll add many data fields during the initial phases of your project, but the type and width of each may change as the system
evolves. To change the width of the CITY field from 20 to 30 bytes, scroll to that field and type in the new value.

To build the structure of a database table, merely highlight the desired table entry, the field to include, and click on Add New
Column. Repeat this step for each field you add. I also defined a fourth table containing index tags with the additional
capability to edit the tag name and index expression.

During the design process, you can print a Structure report (figures 2 and 3) for the database structure and associated index
tags.

Design, create, document
My data dictionary methodology fulfills the design and documentation requirements of a project. But the DY-Dictionary utility
I created goes one step further and actually creates the new database tables based upon the structure defined. Merely supply a
valid subdirectory name, and the utility automatically builds the new tables for you. Further, if you change the structure, the
target tables adjust automatically without loss of data. Database design, creation, and documentation are all rolled into one
easy-to-use tool.

The DY-Dictionary utility creates and maintains FoxPro tables and is available free of charge at
http://www.SouthBySouthwest.com. An expanded professional version of this utility (not free) manages Microsoft SQL
databases and creates database containers. This Pro version lets your application operate with VFP or SQL databases using
identical structures both maintained by a single data dictionary. The Pro version can also maintain separate data dictionaries for
each of your separate application projects.

The payoff
Using my data dictionary methodology takes the pain out of documentation because it's an automatic derivative of the design
process. No longer do you have to transcribe the table structures into a text file and add supplemental descriptions for the
documentation binder. Further, your databases will contain consistent data field names and attributes, which will make
subsequent system maintenance much easier.
You can use a support utility such as DY-Dictionary instead of the FoxPro MODIFY STRUCTURE facility to create and
maintain system tables. In a large development environment, programmers can now delegate the task of maintaining the
dictionary definitions to clerical personnel.

Figure 2: Table Structure report -- Itemizes each system table and the data elements contained therein.

Figure 3: Index Tag Report -- Itemizes each system table with the specified index tags.

 September, 2007

